
Fabien Allard1, Renaud Dubois1, Paul Gompel2 and Mathieu Morel3
1Thales Communications

160 Boulevard de Valmy – BP 82
92704 Colombes Cedex

FRANCE
firstname.lastname@fr.thalesgroup.com

2pgompel@gmail.com
3mathieu.c.morel@gmail.com

ABSTRACT

Tunnel establishment, like HTTPS tunnel or related ones, between a computer protected by a security gate-
way and a remote server located outside the protected network is the most effective way to bypass the network
security policy. Indeed, a permitted protocol can be used to embed a forbidden one until the remote server.
Therefore, if the resulting information flow is ciphered, security standard tools such as ALG1, firewalls, IDS2,
do not detect this violation. In this paper, we describe a statistical analysis of ciphered flows that allows de-
tection of the carried inner protocol. Regarding the deployed security policy, this technology could be added
in security tools to detect forbidden protocols usages. In the defence domain, this technology could help pre-
venting information leaks through side channels. At the end of this article, we present a tunnel detection tool
architecture and the results obtained with our approach on a public database containing real data flows.

INTRODUCTION

Controlling flows going through network boundaries is a key point of information systems security. The filtering
of these flows and the verification of their conformance to the network security policy is done in security
gateways by ALG and firewalls. In particular, these tools enforce the restrictions on forbidden protocols over
the network. This task is achieved by packets filtering techniques and deep inspection of carried payloads.
Nonetheless, firewalls and ALG may become completely ineffective in two cases: if a permitted protocol is used
to embed a forbidden one or if the flow is ciphered. This enables a legitimate or malicious user to infringe the
security policy of an information network, using covert application-layer tunnels to bypass security gateways
(cf. fig. 1).
Tunnelling tools such as HTTPHost [1] or STunnel [2] are easily available on the Internet, and may be used
by a legitimate user to establish a forbidden connection with an external Internet server. These connections
consist in a protocol usually filtered by the gateway (e.g. ICQ, FTP, SSH, Skype, Gnutella, BitTorrent, etc.)
embedded in an HTTP or HTTPS connection. The resulting data exchange is not controlled by the security

1Application Level Gateways
2Intrusion Detection System

RTO-MP-IST-091 P5 - 1

Tunneling Activities Detection Using Machine Learning Techniques

mailto:firstname.lastname@fr.thalesgroup.com?subject=IST_091 NATO Symposium
mailto:pgompel@gmail.com@fr.thalesgroup.com?subject=IST_091 NATO Symposium
mailto:mathieu.c.morel@gmail.com?subject=IST_091 NATO Symposium

TLS tunnel (legitimate ?)

Gateway

User (malicious ?)

Remote server

Ultimate destination

INTERNET

Figure 1: High level scheme of a TLS tunnel

gateway and may lead to critical information leaks or malware intrusions. For example, an invited participant
to a meeting on a military vessel may use a hidden tunnel to leak out classified information via a VoIP protocol.
Moreover, similar hidden tunnels are used by attackers on the Internet to communicate with local hosts that
have previously been infected by a backdoor.
In this paper, we propose a solution to this problem based on machine learning techniques. Our system relies
on a statistical analysis of ciphered flows enabling identification of the carried inner protocol, and therefore,
detection of tunnelling activities. This solution consists in computing features for each flow and comparing
these parameters to a statistical model previously built. The parameters used are derived from the size and the
inter-arrival delays of the packets in the flow.

1.0 RELATED WORK

Many flow level classifiers have been presented in former works and applied to protocol identification [3, 4, 5,
6]. These studies use different parameters and machine learning techniques (Bayesian methods, support vector
machine, etc.) to classify the flows into several categories (SSH, HTTP, P2P, GAMES, etc.), with promising
results. However, none of these studies specifically address the security issues. Therefore, they use parameters
easily tampered with by an attacker, such as port numbers or TCP flags.
To our knowledge, the methods presented in [7] and [8] are the only ones that share our goal to classify en-
crypted or encapsulated traffic. Nonetheless, both of these works use only the first packets of a connection to
classify the entire flow. Thus, by simulating a legitimate flow using only the first packets, an attacker can easily
bypass these systems.
Considering the security approach specifically, i.e. tunnels detection, we describe a classification method based
on a decision trees forest. This method leads to better results than other machine learning algorithms. A study
dealing with the impact of TLS encapsulation on flows features used for classification is also presented. Then,
we present a tunnel detection tool architecture and the classification results obtained with our approach. Finally,
we propose a means to decrease the false positive rate.

Tunneling Activities Detection Using Machine Learning Techniques

P5 - 2 RTO-MP-IST-091

2.0 MACHINE LEARNING TECHNIQUES APPLIED TO TUNNEL DETECTION

Many different machine learning tools have been applied to the flow classification problem. A machine learning
algorithm is used to classify a vector among several pre-determined classes. It consists in two phases :

• a learning phase, taking as input a set of vectors for each class and returning a classifying model. During
this phase, the class of each vector is known ;

• a challenge phase taking as input a set of vectors, each belonging to a hidden class, the model and
returning the class of each vector.

In our case, the classes are the protocols (HTTP, etc.), and the vectors are the flows (TCP, etc.) over the gateway.
However, related studies were conducted on different databases, with different parameters, and results cannot
be compared from one paper to another. An interesting qualitative survey of several methods is presented in
[6], but no quantitative comparison is carried out.
In order to determine the most effective algorithm and the best parameters to use for classification, we conducted
several experiments on a public database described in [9] and [10]. This database is composed of more than
20,000 flows captured on a real network. The distribution of the database flows by traffic classes are presented
in table 1.

HTTP
Mail

FTP Attack Peer to Peer
Multimedia Services Interactive

(POP, SMTP, (WM player, (X11, DNS (SSH,
IMAP, . . .) Real player, . . .) NTP, . . .) Telnet)

5707 3519 3107 1822 5717 649 2150 283

Table 1: Distribution of the database flows by traffic classes

First, we selected the parameters that will be used to build statistical models. In order to classify the ciphered
or encapsulated flows, these parameters must not be related to the packets payload. We thus kept only the
parameters calculated from the sizes of exchanged packets and the inter-packets delays. In order to select the
most discriminating ones, a correlation based feature selection with BestFirst search was applied, as decribed
in [11]. A subset of 10 parameters was determined by this means :

• the number of transmitted packets, client to server direction ;
• the number of transmitted bytes, client to server direction ;
• the IP packets mean size, client to server direction ;
• the IP packets maximum size, client to server direction ;
• the minimum inter-arrival delay between two IP packets, client to server direction ;
• the maximum inter-arrival delay between two IP packets, client to server direction ;
• the number of transmitted bytes, server to client direction ;
• the maximum IP packets size, server to client direction ;
• the variance of the IP packets size, server to client direction ;
• the ’number of uploaded bytes / total number of exchanged bytes’ ratio.

Afterwards, we applied six different machine learning algorithms to the database, using a cross-correlation
method to classify the entire database. These methods are: Support Vector Machine (SVM), Gaussian Mixture
Model (GMM), K-Means, naı̈ve Bayes method, C4.5 decision tree and RandomForest (a forest of random
decision trees). For each algorithm, several criterions were evaluated, such as correct classification rate, false
positive rate, computation time, etc. Figure 2 shows the correct classification rates obtained for each algorithm.

Tunneling Activities Detection Using Machine Learning Techniques

RTO-MP-IST-091 P5 - 3

78

80

82

84

86

88

90

92

94

96

98

Naïv
e B

ay
es

C4.5

Ran
do

mFore
st

K-M
ea

ns

SVM
GMM

Figure 2: Correct classification rates for tested machine learning algorithms

It appears that RandomForest, a machine learning tool never applied before to flow classification, leads to the
best performances in terms of correct classification rate and computation time.

3.0 IMPACT OF TLS ENCRYPTION ON CLASSIFICATION PARAMETERS

Previous experiments were carried out on a database made of clear flows. Unfortunately, there is no publicly
available payload trace set composed of ciphered flows. Our work aims at demonstrating the feasibility of
tunnel detection for ciphered flows, and thus it is necessary to prove that results similar to those mentioned
above would be obtained on ciphered flows. We conducted a complementary study to evaluate the impact of
encapsulation on classification parameters. In particular, we studied the effect of TLS encryption on the set
of 10 parameters we use to classify a flow (note that TLS encryption is used to establish an HTTPs tunnel)
following these steps :

• pairs of clear/ciphered flows and extracted are generated for different protocols (HTTP, SCP, SSH, etc.) ;
• the classification features are extracted for each flow ;
• an affine transformation function from clear to ciphered was estimated for each parameter ;
• the accuracy of these transformation functions was estimated by calculating the residual quadratic error

of approximation.

The results obtained showed that the transformation induced by TLS encryption on classification parameters
can be correctly approximated by affine functions for 8 features out of 10. On the opposite, two of them
(minimum inter-arrival delays between packets from client to server and variance of the size of packets from
server to client) were transformed in a more complex way.
We can reasonably conclude from this results that TLS encryption will not lead to a significant loss of perfor-
mance for the classification algorithm mentioned above.

Tunneling Activities Detection Using Machine Learning Techniques

P5 - 4 RTO-MP-IST-091

4.0 A TUNNEL DETECTION TOOL ARCHITECTURE

The biggest drawback of statistical methods is their high rate of false positive (i.e. legitimate flows classified
as malicious). We propose a specific tunnel detection tool architecture designed to lower the false positive rate.
Figure 3 describes this architecture.

Flow

Capture
Gateway

Local Network

INTERNET

Flow demultiplexing
and

parameters extraction

Flow classification
by RandomForest

algorithm

Statistical model

Generation of the
analysis report using

rules to minimize
false positives

Security report
(syslog)

Figure 3: High level tunnel detection tool architecture

The system consists in a network capture tool (such as TCPDump [12]) combined with a flow demultiplexer.
Classification features are then extracted from each flow, and a RandomForest model is used to determine
the class of each connection. In order to minimize false positive cases due to errors of classification, a set of
heuristic rules is applied to generate an analysis report composed of a list of alerts. These rules take into account
past results of classification, and a level of confidence for each classification. No alert is raised if the confidence
level is too low, if the IP address of the local or remote host is on a white list, etc. The analysis report generated
by the application of this set of rules could have the syslog format, for future integration in a complex intrusion
detection system.
The proposed architecture was implemented on an experimental platform and give very encouraging qualitative
results. These results are presented in the next section.

5.0 QUALITATIVE RESULTS OF THE PROPOSED SOLUTION

5.1 Network simulation

At first, we implemented our detection tool on a network simulator. The simulator consisted in 3 machines,
simulating respectively the local network, the gateway and the Internet. This simulator has been used to measure
the TLS impact (section 3.0) and the efficiency of the detection tool. The resulting detection rates for the
protocols shown in table 2 are close to 100%. However, this did not provide a convincing proof because the
diversity of the flows is reduced compared to a real network :

• the topology of the network is too simple ;

Tunneling Activities Detection Using Machine Learning Techniques

RTO-MP-IST-091 P5 - 5

• the behavior of the user is unique;
• the material is also unique (one OS, one hardware, etc.).

The results obtained for the TLS impact remain valid, but in order to evaluate the accuracy of the tool, a more
complex set of flows had to be tested.

5.2 A flows database in order to evaluate our detection tool

The public database containing real data flows used for our experimentations is provided by the MAWI working
group [13]. The database is a recording of the whole set of flows carried by a transpacific 150Mb/s network
line between Japan and USA, during 96 hours. The payloads have been removed and the headers from layers 1
to 4 from the OSI model have been anonymised.
In order to illustrate the performance of our solution, we classified nine kind of network flows. For each
protocol, the number of flows contained in the database and used for the experimentation is shown in the table
2.

HTTP HTTPs SSH SMTP
DNS

FTP
Active

POP3s NetSteward
(over TCP) Directory

2500 2500 2500 2500 2500 2500 1069 1503 1611

Table 2: Distribution of the database flows according to the protocols

Note that the flows used for the experimentation are mostly clear flows, i.e. unciphered flows. Indeed, there is
unfortunately no public database of ciphered flows precising for each flow which protocol is ciphered. Never-
theless, our analysis with this database is interesting and can be extended to ciphered flows for the following
reasons :

• the flow classification features can be calculated with ciphered flows exactly as for the clear flows ;
• the impact of ciphering on the parameters is limited.

Parameters like the delay induced by the user behavior (as the password capture for an SSH session or the
frequency of HTTP request while surfing) are not affected by the encryption.

5.3 Classification results

Table 3 shows the corresponding confusion matrix obtained with this algorithm. The procedure used to get the
confusion matrix is :

1. For each flow, compute the features regarding the full connection ;
2. Train the classifying model (i.e. RandomForest) on a subset (the learning set) of flows ;
3. Challenge the model on the remaining vectors (the challenge set) ;
4. Report the results.

For example in this table :
• the number 93.08 in the first row indicates that 93.08% of HTTP flows have been correctly classified as

HTTP ;
• the number 4.36 in the first row indicates that 4.36% of HTTP flows have been erroneously classified as

HTTPs.
Therefore, the correct classification rates are on the table’s diagonal. The average rate of correct classification
is 95.81%.

Tunneling Activities Detection Using Machine Learning Techniques

P5 - 6 RTO-MP-IST-091

HTTP HTTPs SSH SMTP DNS FTP
Active

POP3s NetSteward
Directory

93.08 4.36 0.0 1.08 0.04 0.24 0.08 0.36 0.76 HTTP
2.36 91.56 0.08 3.2 0.0 0.48 0.48 2.36 0.28 HTTPs
0.0 0.12 99.44 0.08 0.0 0.08 0.0 0.28 0.0 SSH

0.96 2.28 0.0 91.12 0.2 3.48 1.12 0.72 0.12 SMTP
0.0 0.0 0.0 0.32 99.64 0.0 0.04 0.0 0.0 DNS

0.08 0.6 0.0 3.0 0.0 95.88 0.2 0.24 0.0 FTP
0.19 0.09 0.0 0.47 0.0 0.0 99.16 0.0 0.09 ActiveDirectory
0.13 1.2 0.27 0.73 0.0 0.0 0.0 97.67 0.0 POP3s
1.37 0.06 0.0 0.0 0.0 0.0 0.0 0.0 98.57 NetSteward

Table 3: Confusion matrix obtained using the RandomForest method to classify the database

In a standard configuration, the only allowed protocol might be HTTP and HTTPs. Any flow classified in an
other class (e.g. SSH, POP3, . . .) would then be considered as malicious. Hence, if we set this configuration,
the tool detects 98.68% of illegitimate flows (corresponding to 1.32% of false negatives) with 4.72% of false
positives (i.e. false alarms). This last rate is too high for an actual use, since most of flows are legitimate. In
section 5.7, we propose a way to decrease the number of false alarms sent by the tunnel detection tool.

5.4 Classification computation time

As shown in table 4, the classification computation time is quite short. The implementation has been realized
on a 3.06 Ghz PC platform running under a Debian distribution. The langage used is Java, therefore this
computation time could be reduced using a faster langage such as C if needed.

Phase Time
Learning Phase 1143 ms
Challenge Phase 223 µs

Table 4: Computation time with a 2500 flows database

5.5 Impact of the flows length

The procedure described in section 5.3 works with a full connection. Thus, it does not allow the gateway to
take a real time decision such as ending a session as soon as an illegitimate flow is detected (the decision is
a posteriori). In order to take a pro-active decision, a small number of packets can be used rather than the
full connection. As a consequence, it increases dramatically the computation power required by the security
gateway. Our study showed that the decision can be taken with only very few packets (about 3 packets). This
could be explained by the fact that the considered protocols have different behaviors from the beginning of the
connection, which helps to distinguish them with a small number of packets.

Tunneling Activities Detection Using Machine Learning Techniques

RTO-MP-IST-091 P5 - 7

5.6 Impact of the database size

Another issue is the size of the learning database. Depending on the context, it may be hard to generate a large
database for each flow. For example, the database built with our simulator had to be manually filled. The figure
4 illustrates the impact of the database size on the detection accuracy.

80
82
84
86
88
90
92
94
96
98

100

25 100 200 300 400 500 600 700 800 900 1000
Flow number in the learning database

Pe
rc

en
ta

ge
 o

f c
or

re
ct

ly
 c

la
ss

ifie
d

flo
w

s

Figure 4: Impact of the database size on the detection accuracy

5.7 A simple method to lower the false positive rate

We saw in section 5.7 that the false positives rate (i.e. legitimate flows classified as malicious) is too high for an
actual use while the illegitimate flows rate is, on the opposite, very good. Depending on the use case, it could
be better to limit the number of false positives, because it could disturb most of the network users.
For this reason, we propose to set a confidence indicator. Therefore, a flow with a confidence indicator below a
specific threshold will be automatically considered as legitimate. This rule can be added in the heuristic part of
the tunnel detection tool architecture (cf. figure 3).
The figure 5 shows the rates of false positives and false negatives obtained by applying this simple heuristic,
based on the confidence indicator set. We can see that such a rule can reduce the false positives rate. However,
this method seems too ’naive’, because the increase of false negatives rate (i.e. illegitimate flows allowed by
the security gateway) is significantly faster than the decrease of false positives rate.

CONCLUSION

In this paper, we presented a solution to the key problem of encapsulated illegitimate flows detection across
network boundaries. In a first part, we compared the performances of different machine learning algorithms
and identified the best one in our specific case. In a second part, we conducted a complementary study showing
that the effect of TLS encryption on classification features should not significantly affect classification perfor-
mances. Finally, in a last part, we described a high-level tunnel detection tool architecture. We pointed out
qualitative results using this tool with a public database and the impact of variation around the protocol on its
accuracy. Finally we proposed, regarding the results obtained, a simple method to lower the false positive rate.

Tunneling Activities Detection Using Machine Learning Techniques

P5 - 8 RTO-MP-IST-091

Confidence threshold

0

5

10

15

20

25

0 0,3 0,4 0,5 0,6 0,7 0,8

False positives rate False negatives rate

Figure 5: Impact of a rule based on a confidence indicator on the rates of false positives and false negatives

The construction of our solution is generic and can be tuned to be used for automatic classification, pro-active
reaction or small learning database. In a global cyberdefense system, the proposed architecture could be effi-
ciently used with a classical security tool, such as an IDS, in order to improve the security level.

REFERENCES

[1] HTTPHost, http://www.htthost.com

[2] STunnel, http://www.stunnel.org

[3] J. Erman, A. Mahanti and M. Arlitt, Internet traffic identification using machine learning, IEEE GLOBE-
COM’06, 2006.

[4] T. Karagiannis, K. Papagiannaki and M. Faloutsos, BLINC: Multilevel traffic classification in the dark,
ACM SIGCOMM’05, 2005.

[5] A.W. Moore and D. Zuev, Internet traffic classification using bayesian analysis techniques, ACM SIG-
METRICS’05, 2005.

[6] T.T. Nguyen and G. Armitage, A survey of techniques for Internet traffic classification using machine
learning, IEEE Communications Surveys and tutorials, 2008.

[7] L. Bernaille and R. Teixeira, Early recognition of encrypted applications, PAM2007, 2007.

[8] M. Dusi, M. Crotti, F. Gringoli and L. Salgarelli, Detection of encrypted tunnels across networks bound-
aries, ICC’08, 2008.

Tunneling Activities Detection Using Machine Learning Techniques

RTO-MP-IST-091 P5 - 9

[9] A.W. Moore, D. Zuev and M.L. Crogan, Discriminators for use in flow-based classification, Technical
report, 2008.

[10] W. Li, M. Canini, A.W. Moore et R. Bolla, Efficient application identification and the temporal and spatial
stability of classification schema, Computer Networks 53, 2009.

[11] N. Williams, S. Zander and G. Armitage, A preliminary performance comparison of five machine learning
algorithms for practical IP traffic flow classification, ACM SIGICOMM’06, 2006.

[12] Tcpdump/Libpcap, http://www.tcpdump.org

[13] MAWI Working group traffic archive, http://mawi.wide.ad.jp/mawi/

Tunneling Activities Detection Using Machine Learning Techniques

P5 - 10 RTO-MP-IST-091

